Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Infect Dis ; 225(6): 977-982, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1575292

ABSTRACT

Mucosal immune response in the upper respiratory tract is crucial for initial control of viral replication, clearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and progression of coronavirus disease 2019 (COVID-19). We analyzed SARS-CoV-2 RNA load and expression of selected immune genes in the upper respiratory tract (nasopharynx) of 255 SARS-CoV-2-infected patients and evaluated their association with severe COVID-19. SARS-CoV-2 replication in nasopharyngeal mucosa induces expression of several innate immune genes. High SARS-CoV-2 viral load and low CCL5 expression levels were associated with intensive care unit admission or death, although CCL5 was the best predictor of COVID-19 severity.


Subject(s)
COVID-19 , Chemokine CCL5/genetics , Nasopharynx/virology , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/mortality , Chemokine CCL5/metabolism , Humans , Intensive Care Units , RNA, Viral/genetics , Severity of Illness Index , Viral Load
2.
J Clin Immunol ; 41(7): 1607-1620, 2021 10.
Article in English | MEDLINE | ID: covidwho-1298388

ABSTRACT

The complement system, a network of highly-regulated proteins, represents a vital part of the innate immune response. Over-activation of the complement system plays an important role in inflammation, tissue damage, and infectious disease severity. The prevalence of MERS-CoV in Saudi Arabia remains significant and cases are still being reported. The role of complement in Middle East Respiratory Syndrome coronavirus (MERS-CoV) pathogenesis and complement-modulating treatment strategies has received limited attention, and studies involving MERS-CoV-infected patients have not been reported. This study offers the first insight into the pulmonary expression profile including seven complement proteins, complement regulatory factors, IL-8, and RANTES in MERS-CoV infected patients without underlying chronic medical conditions. Our results significantly indicate high expression levels of complement anaphylatoxins (C3a and C5a), IL-8, and RANTES in the lungs of MERS-CoV-infected patients. The upregulation of lung complement anaphylatoxins, C5a, and C3a was positively correlated with IL-8, RANTES, and the fatality rate. Our results also showed upregulation of the positive regulatory complement factor P, suggesting positive regulation of the complement during MERS-CoV infection. High levels of lung C5a, C3a, factor P, IL-8, and RANTES may contribute to the immunopathology, disease severity, ARDS development, and a higher fatality rate in MERS-CoV-infected patients. These findings highlight the potential prognostic utility of C5a, C3a, IL-8, and RANTES as biomarkers for MERS-CoV disease severity and mortality. To further explore the prediction of functional partners (proteins) of highly expressed proteins (C5a, C3a, factor P, IL-8, and RANTES), the computational protein-protein interaction (PPI) network was constructed, and six proteins (hub nodes) were identified.


Subject(s)
Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Complement C3a/metabolism , Complement C5a/metabolism , Coronavirus Infections/diagnosis , Interleukin-8/metabolism , Lung/metabolism , Middle East Respiratory Syndrome Coronavirus/physiology , Aged , Biomarkers/metabolism , Complement C3a/genetics , Complement C5a/genetics , Coronavirus Infections/metabolism , Coronavirus Infections/mortality , Female , Humans , Interleukin-8/genetics , Male , Middle Aged , Prognosis , Severity of Illness Index , Survival Analysis , Up-Regulation
3.
Signal Transduct Target Ther ; 5(1): 235, 2020 10 09.
Article in English | MEDLINE | ID: covidwho-841900

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to respiratory illness and multi-organ failure in critically ill patients. Although the virus-induced lung damage and inflammatory cytokine storm are believed to be directly associated with coronavirus disease 2019 (COVID-19) clinical manifestations, the underlying mechanisms of virus-triggered inflammatory responses are currently unknown. Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells. The processed inflammatory cytokines are released through the virus-induced necroptosis pathway. Virus-induced apoptosis, necroptosis, and inflammation activation were also observed in the lung sections of SARS-CoV-2-infected HFH4-hACE2 transgenic mouse model, a valid model for studying SARS-CoV-2 pathogenesis. Furthermore, analysis of the postmortem lung sections of fatal COVID-19 patients revealed not only apoptosis and necroptosis but also massive inflammatory cell infiltration, necrotic cell debris, and pulmonary interstitial fibrosis, typical of immune pathogenesis in the lung. The SARS-CoV-2 infection triggered a dual mode of cell death pathways and caspase-8-dependent inflammatory responses may lead to the lung damage in the COVID-19 patients. These discoveries might assist the development of therapeutic strategies to treat COVID-19.


Subject(s)
Apoptosis/immunology , Betacoronavirus/pathogenicity , Caspase 8/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Necroptosis/immunology , Pneumonia, Viral/immunology , Pulmonary Fibrosis/immunology , Animals , COVID-19 , Caspase 8/genetics , Cell Line, Tumor , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-7/genetics , Interleukin-7/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , SARS-CoV-2 , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
4.
Clin Immunol ; 220: 108576, 2020 11.
Article in English | MEDLINE | ID: covidwho-741145

ABSTRACT

Upper respiratory tract is the primary site of SARS-CoV-2 replication. Releasing of pro and anti-inflammatory mediators plays an important role in the immunopathogenesis of Coronavirus Disease 2019 (COVID-19). The aim of this study was to evaluate the early inflammatory response in upper airway by measuring of IFN-γ, TGF-ß1 and RANTES at mRNA level. Forty five SARS-CoV-2 infected patients were enrolled, whose were divided in two groups: asymptomatic and symptomatic. Twenty healthy persons, SARS-CoV-2 negative were included as controls. Higher IFN-γ expression was detected in SARS-CoV-2 infected patients in comparison with controls (p = 0.0393). IFN-γ expression was increased in symptomatic patients (p = 0.0405). TGF-ß1 and RANTES expressions were lower in SARS-CoV-2 infected patients than controls (p < 0.0001; p = 0.0011, respectively). A significant correlation between IFN-γ and TGF-ß1 was observed in SARS-CoV-2 asymptomatic patients (r = +0.61, p = 0.0014). The findings suggest that imbalance between IFN-γ and TGF-ß1 expression could be an impact in clinical expression of SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/pathogenicity , Chemokine CCL5/genetics , Coronavirus Infections/immunology , Interferon-gamma/genetics , Pneumonia, Viral/immunology , RNA, Messenger/genetics , Transforming Growth Factor beta1/genetics , Adult , Asymptomatic Diseases , Betacoronavirus/immunology , COVID-19 , Case-Control Studies , Chemokine CCL5/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Gene Expression , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interferon-gamma/immunology , Lung/immunology , Lung/pathology , Lung/virology , Male , Middle Aged , Nasopharynx/immunology , Nasopharynx/pathology , Nasopharynx/virology , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA, Messenger/immunology , SARS-CoV-2 , Severity of Illness Index , Transforming Growth Factor beta1/immunology
SELECTION OF CITATIONS
SEARCH DETAIL